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3-Amino-5-hydroxybenzoic acid (AHBA?) is the precursor of
the mGN units! found in mitomycif and ansamycihantibiotics,
such as rifamycin Band ansamitocin P-3The biosynthesis of
AHBA proceeds via a novel variant of the shikimate pathway
(Scheme 1) which appears to branch off from the normal pathway
at the stage of 3,4-dideoxy-4-amimearabino-heptulosonic acid
7-phosphate (aminoDAHR,).6 Purification of the last enzyme in
this sequence, AHBA synthase, which aromatizes 5-amino-5-deoxy-
3-dehydroshikimic acid (aminoDHS) to AHBA, and cloning of the
encoding generifK, by reverse genetiésset the stage for the
cloning, sequencing, and analysis of the entire 95 kbp rifamycin
(rif) biosynthetic gene cluster frotAmycolatopsis mediterranei
S699 and subsequently of the mitomy&iand ansamitocirasm}°
biosynthetic genes frorStreptomyces l@&ndulaeand Actinosyn-
nema pretiosumrespectively.
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Further studies on the rifamycin biosynthetic gene cluster
identified seven genesfG, -H, -J, -K, -L, -M, and-N, which are
involved in the biosynthesis of AHBA!! Three of theseiifG, -H,
and J, encode homologues of shikimate pathway enzymes, and
their products were identified as 5-amino-5-deoxy-3-dehydroquinic
acid (aminoDHQ) synthase, aminoDAHP synthase, and aminoDHQ
dehydratase, respectively, confirming the validity of the pathway
from aminoDAHP to AHBA!! However, the mode of formation
of aminoDAHP has remained enigmatic, although it is clearly not
derived from DAHP11 Three additional gene products, RifL, RifM,
and RifN, are absolutely essential for AHBA biosynthesis and
function in the pre-aminoDAHP part of the pathw&RifL closely
resembles Purl0, an oxidoreductase involved in puromycin bio-
synthesis? RifM is homologous to phosphatases belonging to the
CBBY family,’® and RifN is related to a glucose kinase fr&n
coelicolor A3 implicated in glucose repressiéh.Their role in
aminoDAHP formation has so far remained unclear, as has the
origin and mode of introduction of the nitrogen atom. No other
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Figure 1. Substrate specificity of RifN.

plausible candidate gene for the nitrogen introduction step has been
found in therif cluster, and circumstantial evideR&&® suggests
that RifK may have a second function in the pathway, that of
introducing the nitrogen into a precursor of aminoDAHP, in addition
to its well-characterized role as the AHBA synthasé.

Recent work by Guo and Frd&has shed new light on the issue
by demonstrating that the aminosugar, 3-amino-3-deskyictose
6-phosphate (aminoF6P), can be converted into aminoDAHP
(together with DAHP) or further into AHBA by the action of
transketolase fronkEscherichia coli with ribose 5-phosphate as
acceptor, and the recombinant RifH protein or a cell-free extract
of A. mediterraneplus phosphoenolpyruvate (PEP). Presumably,
the transketolase convertédnto the imino analogue of erythrose
4-phosphate (E4P), which then partly served directly as a substrate
for the RifH-catalyzed condensation with PEP to give aminoDAHP
and partly underwent hydrolysis to E4P to produce DAHP. As a
biosynthetic source of the aminoF6P, Guo and Ffgstoposed
kanosamine (3-amino-3-deoxyglucose,3), a known secondary
metabolite of Streptomycesand other bacteritf. Since either
kanosamine or its isomerization product would have to be phos-
phorylated to give aminoF6P, this suggests a possible role for the
kinase encoded bgifN.

To examine its functional activity, RifN was overexpressed in
E. colias a Hig fusion proteid® and purified to near homogeneity
on a Ni-NTA column (Qiagen). The standard coupled assay for
kinase activity was performed as described by Seno and Chater,
measuring NADH consumption at 340 nm. Only kanosamine
reacted specifically with RifN+ ATP, while all other sugar
derivatives examined (glucose, mannose, galactose, fructose, glu-
cosamine, and 3-amino-3-deoryfructose) gave no change in
absorbance at 340 nm (Figure 1). The product generated from
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kanosamine was prepared on a preparative %catel identified

by 'H NMR, 3C NMR, and ESI-MS analysésas kanosamine
6-phosphate 4). The IH NMR in D,O showed two anomeric
doublets at 4.57 and 5.12 pprah € 7.8 and 3.6 Hz, respectively)
in a 1:1 ratio.3P-coupled signals in theC NMR for C-6 J = 3.6

Hz) and C-5 § = 6.1 Hz) established the position of the phosphate
group.Ky, values of 1.9 and 0.39 mM, respectively, were determined
for ATP and kanosamine, andhay is 0.6 mmol mim! mg=t at 37

°C and pH 7.2. The enzyme is dependent on®Mgvith Mn2*,
Cco?t, and NP* able to substitute at 21, 30, and 18% relative
efficiency, whereas Z1, C#*, and Fé&" are inhibitory.

The data identify RifN as a specific kanosamine 6-kinase, which
together with the essential nature of tHeN gené! establishes
kanosamine and its 6-phosphate as intermediates in AHBA forma-
tion. RifL and -M must function before RifN in the pathway, since
arifN mutant ofA. mediterraneiwas able to complement both a
rifL and arifM mutant to restore rifamycin B production (data not
shown). Keeping in mind the likely biosynthesis of kanosanifne,
this allows us to propose a new pathway for aminoDAHP formation
starting from UDP-glucose (Scheme 2). RifL and RifK jointly
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convert UDP-glucose into UDP-kanosamifigyhich is cleaved by
RifM to kanosamine. Following the action of RifN, a “housekeep-

ing” isomerase (no candidate gene for a dedicated enzyme has been

found in therif clustef) must convert kanosamine 6-phosphate into
aminoF6P. The conversion of the latter into the imine of-E4P may
be catalyzed by Rif Orf15, which is homologous to transketofases
and which may act in concert with the aminoDAHP synthase, RifH,
to suppress hydrolysis of the imine. Work is underway to further
test this hypothetical pathway.
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thiogalactopyranoside to 0.2 mM.
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